Nuclear Energy

Benchmark Experiments to Validate Multiphysics Simulations for Nuclear Energy Systems

Bhupinder P. Singh David Pointer August 11, 2015

IRP Goals

- Make progress toward establishing benchmarks for validation of high-fidelity multiphysics codes for assessment of fuel and safety performance in an nuclear reactor core.
 - Example model the phenomena governing light water reactor accident tolerant fuel behavior in postulated accident conditions.
- Establish new approaches to validation experiment development which recognize special requirements for validation of high-fidelity multiphysics codes
 - Provide adequate data resolution in time and space, adequate measurement of boundary conditions, and adequate characterization of uncertainty
 - Develop methods to assess the impact of individual phenomenological impact on integral data for strongly-coupled multi-physics simulations

IRP Objectives

- Develop a state-of-the art experimental multiphysics validation benchmark
 - Modeling application of high importance
 - Demonstrating high-fidelity experimental methods for strongly-coupled phenomena while delineating phenomenological contributions
 - Enhancing validation and uncertainty quantification approaches
- Support the use and adoption of high-fidelity multiphysics modeling and simulation tools developed by the Department of Energy's Nuclear Energy Programs (e.g., NEAMS, CASL, LWRS, FCR&D) by expanding their validated regimes
- Support the efforts of the DOE Nuclear Energy Knowledge and Validation Center (NEKVaC) to establish methods and guidelines for validation and uncertainty quantification of high-fidelity multiphysics simulations
- Support NE collaborations with the OECD/NEA on high-fidelity multiphysics validation and uncertainty quantification

IRP Scope

- Plan, design, and conduct an experiment that can serve as a benchmark for critically assessing the results predicted by a multiphysics simulation code for a nuclear energy system.
- Document the methods for designing the experiment including those for collection of data and quantification of uncertainties.
- Collect, store, reduce and present the data in a context which preserves all of the expert knowledge and rigor that went into the design and execution of the experiment.

Nuclear Energy

Multiphysics Integration in DOE-NE Software Projects

			Major HPC Software Projects												
		ME	3M		SHARP			MAMMOTH			VERA-CS				
		Codes	Bison	Marmot	PROTEUS	Nek5000	Diablo	ORIGEN	RattleSnake	RELAP-7	MAMMOTH	MPACT	CTF	HYDRA-TH	Mamba
Physics Areas	Fuel Performance	Bison	-	Χ	Х	0		Χ	Х	X	Χ	Χ	Х		
		Marmot	X	_											
	Neutron Transport	MPACT	Х					Х				-	Х		X
		PROTEUS	X		-	Х	X	X							
		RattleSnake	Х						-	X	Х				
	Isotopic Depletion	ORIGEN	1		Х			-				X			
		MAMMOTH	X						X		_				
	Thermal Hydraulics	CTF	Х									X	-		X
		HYDRA-TH												_	X
		Nek5000	0		X	Х	X								
		RELAP-7	X						Х	_	Х				
	Coolant Chemistry	Mamba											X	X	-
	Structural Mechanics	Diablo			X	X	-								

Key: X -ongoing O -planned

Six Key Characteristics of a Validation Experiment

- 1. A validation experiment should be jointly designed and executed by experimentalists and computationalists.
- 2. A validation experiment should be designed to capture the relevant physics, all initial and boundary conditions, and auxiliary data.
- 3. A validation experiment should leverage the inherent synergisms attainable between experiment and computational approaches.
- 4. Independence between computational and experimental results should be maintained where possible.
- 5. A hierarchy of experimental measurements should be made which presents an increasing range of computational difficulty.
- 6. Carefully employ experimental uncertainty analysis procedures to delineate and quantify random and correlated bias errors.

Reference: W. L. **Oberkampf** and C. J. **Roy**, Verification and Validation in Scientific Computing, Cambridge University Press, Cambridge, 2010.

Experimental Uncertainty Quantification is Challenging

- Reported instrumentation error
- Instrumentation bias
- Repeatability error
 - Systematic data acquisition errors
 - Phenomenological time scale errors
 - Environmental biases
- Experiment scaling bias
- Experimentalist bias
- Data user bias
 - Comparison method bias

Requirements for Successful Proposals

■ Validation is application specific

- Define a clear application of high importance
- Select an appropriate modeling and simulation strategy
- Propose a multiphysics validation benchmark based on a new experiment
- Explain the gap in the available data that is filled by the proposed work
- Explain why the identified gap is a high priority

Validation is only as good as the uncertainty quantification supporting it

- Define a clear approach to UQ for proposed experiment
- Explain why the proposed UQ strategy is both necessary and sufficient

■ Validation benchmarks must be well-documented and quality assured

- Define a clear quality assurance plan for the benchmark to be generated
- Identify standards which will be satisfied
- Explain why the proposed QA strategy is both necessary and sufficient

Desired Outcomes

- Demonstrate a successful approach for high-fidelity multiphysics code validation experiment and benchmark development
- Add value to DOE-NE multiphysics code development efforts through development of a validation benchmark for an application of high importance
 - IRP teams may propose to exercise the specific selected code application and compare results from the code and the benchmark experiment.
- Support establishment of practical methods and guidelines for uncertainty quantification in high-fidelity multiphysics benchmarks which supports NEKVaC and NE activities with OECD/NEA
- Support development of appropriate quality assurance and knowledge management strategies for high-fidelity multiphysics benchmarks by NEKVaC and OECD/NEA
- Incorporate knowledge learned in a college course to advance the state-of- the-art on VVUQ